The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections.
نویسندگان
چکیده
Diffusion tensor imaging is highly sensitive to the microstructural integrity of the brain and has uncovered significant abnormalities following traumatic brain injury not appreciated through other methods. It is hoped that this increased sensitivity will aid in the detection and prognostication in patients with traumatic injury. However, the pathological substrates of such changes are poorly understood. Specifically, decreases in fractional anisotropy derived from diffusion tensor imaging are consistent with axonal injury, myelin injury or both in white matter fibres. In contrast, in both humans and animal models, increases in fractional anisotropy have been suggested to reflect axonal regeneration and plasticity, but the direct histological evidence for such changes remains tenuous. We developed a method to quantify the anisotropy of stained histological sections using Fourier analysis, and applied the method to a rat controlled cortical impact model to identify the specific pathological features that give rise to the diffusion tensor imaging changes in subacute to chronic traumatic brain injury. A multiple linear regression was performed to relate the histological measurements to the measured diffusion tensor changes. The results show that anisotropy was significantly increased (P < 0.001) in the perilesioned cortex following injury. Cortical anisotropy was independently associated (standardized β = 0.62, P = 0.04) with the coherent organization of reactive astrocytes (i.e. gliosis) and was not attributed to axons. By comparison, a decrease in white matter anisotropy (P < 0.001) was significantly related to demyelination (β = 0.75, P = 0.0015) and to a lesser extent, axonal degeneration (β = -0.48, P = 0.043). Gliosis within the lesioned cortex also influenced diffusion tensor tractography, highlighting the fact that spurious tracts in the injured brain may not necessarily reflect continuous axons and may instead depict glial scarring. The current study demonstrates a novel method to relate pathology to diffusion tensor imaging findings, elucidates the underlying mechanisms of anisotropy changes following traumatic brain injury and significantly impacts the clinical interpretation of diffusion tensor imaging findings in the injured brain.
منابع مشابه
Quantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brain
Diffusion tensor imaging (DTI) reveals microstructural features of grey and white matter non-invasively. The contrast produced by DTI, however, is not fully understood and requires further validation. We used serial block-face scanning electron microscopy (SBEM) to acquire tissue metrics, i.e., anisotropy and orientation, using three-dimensional Fourier transform-based (3D-FT) analysis, to corr...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملInjury of the spinothalamic tract in a patient with mild traumatic brain injury: diffusion tensor tractography study.
OBJECTIVE To report on a patient found to have injury of the spinothalamic tract on diffusion tensor tractography following traumatic brain injury. CASE DESCRIPTION A 29-year-old male patient with head trauma resulting from a pedestrian car accident presented with pain in multiple areas (both subscapular areas, posterior head and neck, both upper trapezius areas, and the right arm and leg). H...
متن کاملMobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat
Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 134 Pt 8 شماره
صفحات -
تاریخ انتشار 2011